
Hard nip sizing 
Surface sizing is an essential process in the pulp and 

paper industry for improving the strength properties of base paper 
or board. In film sizing, the starch application takes place mostly 
on the outer surfaces of the paper or board, and only a minor 
portion of the starch penetrates deep inside the structure of the 

base paper or board. Hard nip 
sizing (Figure 1) overcomes 
this weakness by using 
pressure, allowing for much 
deeper penetration  starch 
and other sizing chemicals 
[1], and thus increasing the 
strength of properties more than 
conventional surface sizing 
processes.

It also produces better smoothness because hard rolls 
work like in calendering. As can be seen in the photograph (Figure 
2), hard nip sizer rolls and the loading system are like calenders 
rather than conventional sizer rolls. In hard nip sizing process, the 
nip pressure results in an optimal packing of fibres and the sizing 
through the z-direction of the web, resulting in bigger increase of 
SCT in cross direction and burst strength [2]. 
Process development

All kinds of production processes can be made more 
efficient. The aim of process development is often to make 
processes more efficient, sometimes by saving production costs 
while also improving quality. There are usually a few degrees of 
freedom in the process which affect the product properties and may 
also affect the production rate. One would like to determine the best 
values of these variables such that the resulting product properties 
will be within desired limits. 

This requires quantitative knowledge of the effects of 
relevant variables in a precise and concise form. In other words, we 
would need the knowledge of the process in a mathematical form, 
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which allows for various kinds of calculations. Developing these 
equations is called mathematical modelling, which can be performed 
in several different ways. 
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Figure 2: Hard nip sizer at the pilot plant of Valmet in Järvenpää

Mathematical modelling
Mathematical models can be used instead of experimentation 

if they are reliable enough. Mathematical models also permit the 
user to carry out various kinds of calculations, like determining 
suitable values of variables which will result in desired product 
quality in an economic way. Mathematical modelling can be 
performed in various ways, and different ways are suitable in 
different situations. Mathematical models represent knowledge of 
quantitative effects of relevant variables in a concise and precise 
form. 

Physical or phenomenological modelling is not particularly 
effective for predicting material properties like strength, thermal 
conductivity or solubility. Physical modelling usually requires a lot 
of assumptions and simplifications. Empirical and semi-empirical 
modelling, on the other hand, does not need any major assumptions 
or simplifications. Empirical models simply describe the observed 
behaviour of a system. Empirical modelling is feasible when the 
relevant variables are measurable. 

Figure 1: The principle of hard nip 
sizing is to use higher nip loads
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Figure 3: A typical feed-forward neural network

Conventional techniques of empirical modelling, however, 
are linear statistical techniques. These tend to have serious 
limitations because nothing in nature is very linear, and particularly 
so in process engineering and materials science. It therefore makes 
sense to use better techniques of empirical and semi-empirical 
modelling which take nonlinearities into account. 
Nonlinear modelling 

There is hardly any material behaviour which is absolutely 
linear. It is therefore wise to treat the nonlinearities rather than 
ignore them. The proponents of linear techniques draw on their 
simplicity and the possibility of adding nonlinear terms in linear 
regression. Often this is not done, and is not efficient even if it is 
done. Nature does not follow the simplicities that we try to fit it in, 
using common linear techniques.

Nonlinear modelling is empirical or semi-empirical modelling 
which takes at least some nonlinearities into account. Nonlinear 
modelling can be carried out with a variety of methods. The older 
techniques include polynomial regression, linear regression with 
nonlinear terms and nonlinear regression. These techniques have 
several disadvantages compared to the new techniques of nonlinear 
modelling based on free-form nonlinearities. 

The newer methods like feed-forward neural networks and 
series of basis functions do not require a priori knowledge of the 
nonlinearities in the relations. Among these new techniques, feed-
forward neural networks have turned out to be particularly valuable 
in chemical engineering [3] and materials science. Feed-forward 
neural networks have several features which make them better 
tools for nonlinear empirical modelling. Besides their universal 
approximation capability [4], it is usually possible to produce 
nonlinear models with some extrapolation capabilities with feed-
forward neural networks.

There are many different types of neural networks, and 
some of them have practical uses in process industries. Neural 
networks have been in use in process industries for about 30 years. 
The multilayer perceptron, a kind of a feed-forward neural network, 
is the most common one. Most neural network applications in 
industries are based on them [5].

Feed-forward neural networks resemble structurally and to 
a smaller extent functionally the networks of neurons in biological 
systems. Like the networks of neurons in the brains, artificial neural 
networks also consist of neurons in layers directionally connected to 
others in the adjacent layers (see Figure 3).

In a feed-forward neural network of the kind shown in Figure 3, the 
output of each neuron i in the feed-forward neural network is usually 
given by
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where σ is called the activation function, and is usually the logistic 
sigmoid, given by
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 The incoming signals to the neuron are xj, and wij are the 
weights for each connection from the incoming signals to the ith 
neuron. The wi0 terms are called biases. Then the output is simply 
calculated as the weighted sum of the outgoing signals zi from 
the neurons in the hidden layer. This results in a set of algebraic 
equations which relate the input variables to the output variables. 
Thus, for each observation (a set of input and output variables), the 
outputs can be predicted from these equations based on a given set 
of weights. The training procedure aims at determining the weights 
which result in the smallest sum of squares of prediction errors. 
Today, most people use good optimisation methods for that purpose.
Nonlinear modelling in process engineering
Nonlinear modelling has been utilised successfully for various 
industrial sectors including plastics and rubbers, metals, cement 
and concrete, medical materials, semiconductors, ceramics, 
mineral wools, glass, power generation, biotechnology, pulp and 
paper, etc. Different processes have different characteristics - 
different raw materials, different compositions, and are produced 
by different batch, continuous or fed-batch processes. However, 
some things are common to modelling of various kinds of processes. 
Material properties or product properties, production rate and 
production economics depend on composition variables (or feed 
characteristics), process variables and dimension variables, as as 
summarised in Figure 4. 

For process development, one would like to determine 
the best values of composition variables (or feed characteristics), 
process variables and/or dimension variables such that the resulting 

product properties will be within 
desired limits, with a good production 
rate or at a minimal production cost. 
Sometimes, feed characteristics 
or composition variables might be 
constants. In more common situations, 
the process variables may be constant 
or dependent variables, and the 
only degrees of freedom in materials 
development may be the composition 
of the feed, the amounts of raw 
materials and possibly dimension 
variables. 
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Figure 4: Composition variables, process variables and dimension 
variables determine product properties, production rate and 
production economics

Figure 6: SCT CD index, burst index, raw material cost and several 
other consequences of sizing are predicted using the nonlinear 
models on the prediction screen

The problem looks somewhat similar from the modelling 
point of view for a wide variety of materials and processes. 
Nonlinear models combined as shown in Figure 4 make process 
development more efficient by reducing expensive experimentation 
and by helping achieve better combinations of product properties, 
often optimised for cost. 

Sometimes the composition variables or feed characteristics 
might be constants. In other situations, the process variables may be 
constant or dependent variables, and the only degrees of freedom 
in materials development may be the composition of the feed, the 
amounts of raw materials and possibly dimension variables. This 
is often referred to as recipe development. In this case, we have 
freedom in both composition as well as process variables.

Experimentation
Nonlinear modelling needs either experimental or production 

data. A lot of experiments are carried out at the pilot plant in 
Järvenpää round the year. From 22 series of such experiments from 
2019 to 2021, a total of 970 usable observations were collected. The 
equipment allows hard nip sizing as well as film sizing, and the data 
contains a small fraction of film sizing results also. These include a 
wide variety of papers and boards, particularly liners with modified 
starches of different viscosities. These experiments were used for 
the model development work. 

If nonlinear models are to be developed for a single paper 
mill, a small number, probably 25 to 30, would have been sufficient 
for developing nonlinear models, if the experiments had been 
planned keeping in mind that nonlinear models would be developed 
based on that data. Besides SCT index in the cross direction and 
burst index, air porosity, thickness and density were also measured 
from each of the experiments. 
Nonlinear model development

From the raw data set, it was possible to see the effects of 
certain variables. For example, the higher the base paper’s basis 
weight, the lower is the increase in SCT index and burst index. 
Higher nip loads also produce larger increases in SCT index as 
well as burst index. The raw experimental data was analysed and 
preprocessed, after which nonlinear models were developed and 
tested using the NLS 020 software. The experimental data taken into 
use was fairly consistent and of good quality, and as a consequence, 
good nonlinear models could be developed. 
Nonlinear models of SCT CD and burst indices

Nonlinear models in the form of neural networks with a 
single hidden layer were attempted and tested to predict SCT CD 
index, increase in SCT CD index, burst index as well as the increase 
in burst index over unsized paper. The rms error (roughly speaking, 
the standard deviation of prediction errors) of SCT CD index was 
around 1.2 J/g while the rms error of burst index was 0.13 kN/g 

which amount to about 5% in terms of fractional errors for both. 
Figure 5 shows the burst index predicted from the nonlinear model 
plotted against the 970 measured values from 22 series. The model 
predictions look close enough to the measurements. It is natural 
that the nonlinear models perform well since the effects are not 
very linear, while the linear models will not hesitate to predict even 
negative values of the indices.

Implementation of the models in software 
Nonlinear models in the form of neural networks are not 

simple equations. The equations are clumsy and unwieldy, and 
not easy to work with. Engineers, let aside plant operators, cannot 
be expected to be familiar with such mathematics. It is therefore 
imperative to implement the models in software which makes 
the use of models easy for anyone. LUMET systems are a set 
of software components which are assembled depending on the 
needs of the users. In all LUMET systems, the central point is the 
prediction screen (Figure 6), where the user can feed in the values 
of the input variables on the left side, and can predict the outputs 
shown on the right side. Besides SCT CD index and burst index, 
there are also economic variables like raw material cost. Figure 6 
shows a typical prediction calculation. A lot more things can be done 
once the models have been developed and implemented in software 
like this.

Figure 5: Burst index predicted from the nonlinear model plotted 
against measured values
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Figure 7: Burst index plotted against size weight on bottom side for different sizing temperatures

Optimisation calculations 
There could be several purposes of developing 

mathematical models. In the beginning, one wants to use models 
to design the process and its equipment. Once the process 
equipment exists, it is natural to want to find out how best to 
operate the process. In other words, the objective could be to derive 
maximum production and quality with minimal costs and time. More 
specifically, for sizing, the aim could be to derive more strength from 
less starch.

Optimisation helps derive the maximum benefit from the 
process. The objective of process development is usually to 
determine optimal or near optimal process operation conditions. 
Once we have the quantitative knowledge of the process in terms 
of variables of interest to us in the form of equations, it becomes 
possible to determine good operating conditions. We would often 
like to derive a certain SCT CD index and burst index at minimal 
cost, while taking into account constraints on various other variables.

Besides predicting the output values which are various 
consequences of operating the process, one can see the effects of 
each of the input variables on the outputs in different kinds of plots. 
Figure 7 shows a set of curves of burst index plotted against size 
weight on bottom side for different size temperatures, while keeping 
other input variables constant. It is easy to see that the higher the 
size weight, the higher is the increase in the burst index, but a limit 
is reached. Higher temperatures have a better effect.

Pairs of variables often have interaction (synergistic) effects, 
which can be seen from this kind of plots, or from contour plots. 
Figure 8 shows contours of SCT CD index on a plane of nip load 
and basis weight, keeping other input variables constant. Higher 
nip loads naturally lead to better sizing and the benefit is higher for 
smaller basis weights since the size weights are constant. Surface 
plots can also be prepared in LUMET systems. 

Figure 8: Contours of SCT CD index on a plane of nip load and basis weight
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• All kinds of processes can be made more efficient.
• One can derive a lot more value from a process by tuning it well.
• Hard nip sizing is a superior process to film sizing.
• The advantage of a good process can be maximised by process optimisation.
• Process optimisation needs a good mathematical description of the process.
• Nonlinear modelling is an efficient tool to describe various kinds of processes.
• Composition variables, process variables and dimension variables affect product properties in a complicated manner, and 

people with even decades of experience cannot predict the combined quantitative effects of the relevant variables.
• Nonlinear modelling can utilise production data or experimental data.
• Nonlinear modelling does not need any significant assumptions.
• A good process with optimisation based on nonlinear models is a very powerful combination.
• Significant reductions in production costs can be achieved with a modest effort like this.

 CONCLUSIONS

Figure 9: An optimisation calculation to minimise raw material 
cost per ton while keeping SCT CD index above 26 and burst 
index around 3 in presence of other constraints

These calculations are now easily done with the nonlinear 
models implemented in a LUMET system, resulting in significant 
savings in sizing chemicals. Figure 9 shows one such calculation. 
The base under consideration is a 180 g/m² liner with a SCT CD 
index of 21 J/g and a burst index of 2.5 kN/g. With a given starch, 
we have to produce a SCT CD index of at least 26 J/g and a burst 
index of at least 3 kN/g, with minimal cost per ton of product. There 
is an additional limitation on the wet film. The calculated optimal 
conditions are in the last column. A size weight of 2.63 g/m² on 
the top side and 1.47 g/m² on the bottom side to be applied at a 
temperature of 80°C with a nip load of 360 kN/m should minimise 
the raw material cost, according to the calculation.

We could have added a variable SCT CD index increase 
divided by the total size weight and maximised that. However, 
the calculation of Figure 9 is more realistic. Usually, there are 
specifications on SCT CD index and burst index, and it makes sense 
to minimise the cost instead of maximising the strength increase for 
a given amount of starch. 
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